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NOTES ON VON ZEIPEL'S METHOD

by

Giorgio E. O. Giacaglia

I. INTRODUCTION

Since the rediscovery of von Zeipel's method by D. Brouwer(1959)

and its successful application to the problem of artificial satellites,many

other problems have been solved by that same method, thus proving

its great applicability. It is the purpose of these notes to present the

general equations of Von Zeipel's method and discuss briefly their

applicability.

The reduction of the order of a differential canonical system can,

in theory, be performed by obtaining, one way or another, integrals of

the system. One of them is the Hamiltonian itself when it is time

independent. Actually, this integral of the system (physically its

"energy"), can describe completely the geometry of the solutions in a

phase space of 2n dimensions where 2n is the order of the system.

When this order is 2, then the solution is completely specified and the

use of the Hamiltonian reduces it to a first order differential equation

which can be integrated by quadrature. The introduction of p integrals

in a system of n degrees of freedom (gn th order), reduces it to one of



n - p degrees of freedom which can be integrated immediately when

<
n -p - I (where, of course, p cannot be greater thann).

A few comments can be made with respect to the more famous

methods of reduction to show their eventual connection with yon Zeipel's

method.

2. FROM HAMILTON TO yon ZEIPEL

In the discussion that follows only methods that have been used in

connection with differential systems describing the motion of a physical

system are considered. The presentation does not necessarily follow a

chronological order.

Consider then a system of n degrees of freedom given by 2n first

order canonical equation

3H

J _yj

(j = 1,2,...,n)

_% = 3H
_x.

1

(1)

where the Hamiltonian H = H (xl, ..., x n, y_ .... Yn )is presumed to be

time independent. If this is not the case, the introduction of time as a

new canonical coordinate x +1 (the associated momentum being-H)

always reduces the latter to the former case. The degree of freedom

will however increase by one.



A canonical transformation of the variables (x,y) to new variables

(x', y') will be, in this exposition, equivalent to the problem of finding

a generating function S = S (x', y, t ) such that

_S
# _

YJ "8x'.
l

_S

J 3yj

(j =1,2,...,n) (z)

It is easily seen that this is a sufficient condition to satisy the Jacobi-

Poincar e relation

I]

Z (xj dyj -x'. dy'j) = dWJ

j=l

(3)

which is valid whether or not S is an explicit function of time. The

Hamiltonian of the new system will be equal to that of the old one inas-

much as one is obtained from the other by introducing the transforma-

tion of variables expressed by Equations (2)when 3S/_t = 0.

a. HAMILTON-JACOBI--The method introduced by Hamilton and

Jacobi consists in obtaining a canonical transformation such that the

new Hamiltonian is identically zero. In such a case, the new variables

are all constants.

b. LINDSTEDT'S METHOD--Lindstedt's method is a particular

application of the Hamilton-Jacobi method for cases where the



Hamiltonian is expanded in terms of small parameters. In this partic-

ular case the solution gives the coordinates as linear functions of time

and the momenta as constants {usually called action angle variables).

The comparison with the Hamilton-Yacobi method is purely formal

since the method devised by Lindstedt is quite original. Actually, the

real difference between yon Zeipel's and this method is that Lindstedt

does not make use of a generating function.

c. WHITTAKER 'S METHOD (solution by series). This method

obtains n integrals of the system by reducing the Hamiltonian to a

function of the products pj = xj yj (j = 1,2,...,n). In this case, since

_. = _H _H x.

_yj "_pj J

_H _H
_rj -

_xj _pj yj'

it follows that

xjyj +xjyj =0 or pj = const (j =l,2,...,n).

d. DELAUNAY'S METHOD--This method, as Lindstedt's, can be

applied only when the Hamiltonian consists of a "zero order" part (the

corresponding system having a known solution) and a "disturbing

function" that has a small numerical factor. The basic approach of the

yon Zeipel's method is the same as that of Delaunay's method; how-

ever, the latter one makes no use of a generating function and breaks
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the disturbing function into parts which are treated separately. The

Hamiltonian must be constructed after the transformation is performed

for each particular part.

A few more techniques could be mentioned but one deserves more

attention than all the others. The concept of adiabatic invariants in

Quantum Mechanics is quite analogous to the concept of "mean variables"

in yon Zeipel's method, or to a certain extent to what Whittaker calls

Adelphic Integrals.

3. THE yon ZEIPEL'S METHOD (1916)

It has been quite common, after Delaunay, to use the negative of

the Hamiltonian. Thus, if F =-H and if_ (j = 1,2 .....n) and L (j =
J J

l, 2, ..., n) are the coordinates and momenta respectively, then

i _ DF
J _L

J

_ = ___F_F
J 3,_

J

('j = 1, 2 ..... n) (4)

Suppose

F = F(,_, L; c') (5)

where ! is a "small parameter" and _ and Lindicate the sets (_I..... _n) and

(L I .... ,L ). A canonical transformation involving the parameter £will

be given by a generating function
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such that

S =S(4, L*; c)

(j = 1, 2 ..... n) (6)

4: _s
J=-_-V

l

where (4*,L*) are the new coordinates and momenta.

negative of the new Hamiltonian, then we assume

If F* is the

F*(4*, L*; :)=F(4(4", L*; :), L(4",L*; e); e) (7)

or, from Equations (6),

F" \SU (8)

In a more restrictive sense it is assumed that the series

N

"ZF = e k F k (4, L)

k=O

(9)

represents the negative of the Hamiltonian to the required degree of

precision and converges to F(_, L; :) as N-_. From this point Fis

written as F without danger of confusion. Furthermore, it is assumed

that



S (_, L*; c)

F k (_, L)

F* (_*, L*; ¢)

are developable in Taylor's series in the neighborhood of e = O, so

that the series

S = _ _k Sk (_, L*)_=o

k=O

k=O

(10)

are convergent for sufficiently small E.

By the conservation property

ckFk ' "_" -- V \d_/E=O
k=O k=O

(11)

where it is important to note that 3S/_ contains c through Equa-

tions (6). Equating the coefficients of like powers in E in both sides of

Equation (11) gives a system of partial differential equations in Sand

F*. The next step is obtaining this system.

4. DIFFERENTIAL EQUATIONS OF THE VON ZEIPEL'S METHOD

Y

The m th derivative of Fk with respect to ¢ at the point ¢ = 0 is

obtained as follows.
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Consider

dFk £ _Fk dLi _ £ _Fk d (__i)
"dT'E = _ d_" bL i d_ "

i= I i=l

Using Equation (10) it follows that

i=l j=0

Let US nOW compute

where

?,£.
i=l j=l

6 _Fk,_

din-1 j-1

d_ m-I "_i'/

(12)

Applying Leibniz' formula, this becomes

dm-, /_j_ ' DFk_ rain(m-l, j-I)(m_l.)dV_ j-, d m-l-v (_Fk._
d_ m-I _--_i) -- 1,'=O d_V d_m-I-_ t_i)"

For _ = 0 the only possible choice is j <m. Then

d_m_ l J-I _i ) =0--(7::) (J- Ld£m-/ k_Li/Je=o"
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Now using Equation {IZ)

f=
\ d_m/_=° i=l _=0

T" It is now desirable to rewrite the above equation as

11 @0

dcm/_: 0 =
il=l jlffil ,=0 L dgm-j, \_--_,,)J,:0

Equation(13) is now applied to find _d_-J_I _.31Fk,_

kd£m-Jl _T/J_= 0.

The result is

(13)

I -dm-jl :3'Fk'_'-] _ _ (m-j'-l)' :3SJ=_.... J, <m-_;:i;_3\_-ij_),:ox
d_m-J' k3Lil)] _:0 i = j2=l

d_m-Jl-J2 \3Li I 3Li 2 _=0

The process is repeated up to the point where

so that

m-J1-J2 ..... JN = 0,

kd£m-jl-J2 - "-JN L i 12 •

(14)



Substituting these successive derivatives into Equation (13), it follows

that

\ d6m ie=o ii=I Jl=l _=o

x _-'_ £ J2 (m_jl_j2)!(m-jt-1)! \_/_--_](3SJ2_ x
i2= 1 J2=l =0

n co

xEZ
i3=1 J3=l

x • • • x

iN=I

(m_jl_j2 ..... jN_,-1)! (3SjN_
JN (m J l J2 "'" tg--'-_iN),=o, .... jn)!

jN---I

X

. 3NFk
×

_Li I _2

The numerical factors are reduced to

m!

Jl J2" " "iN re(m_ jl ) (m_jl _j2 ) ...(m_Jl-Jz ..... JN-I )

_-m! C(m; Jl' J2' ""' JN)

and the second summation does not run in general up to infinity but to

a limit given by condition (14). Thus the above relation becomes

\ dera /E=O (m) p-I i =

m! C(m; j 1..... JN )
t-_-_ p)___o t3L,,. • • 3L,N)_=o

p=l

(]5)
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where Z stands for summation over.all possible positive integerS_jp
(m) N

whose sum ism (according to Equation (14)}, and the first product

p=lrefers to the summation signs . There aren of these integers.
ip=l

Equation (15) will be valid even for m = 0 with the definitions

and

d°Fk
d_ o - F k

c(o; -) =-1.

From Equations (10) and (11) it follows that

k=O k=O _=o m! \d¢"/c=o

6m+k £v %-m
Z

m! m! \ dem /e=ok=O m;O \d£m/_=0 v'O m=O

The substitution of these results into Equation (14) leads to

F =

i £ _--_ S /_) c(m; j' ..... JN)
v=O m=O (m) p=l i =

In a complete similar way, if

k=O

11



t hen

r*= C(m;Jl ..... JN) \_Je _"b_"-;-": "_7-_'_"* -/
z.=O m=O (m) p=l kip=I/ p=l =0 \ 11 iN/e=O

(17)

It is important to note that in Equation (16), _ = 0 is equivalent to

Lr = 3S0 /_r (r = 1, Z ..... n), and in Equation (17) c = 0 is equivalent

to {*r = 3S0/_L: (r = 1, 2, ..., n), according to Equation (10). The

equality of factors of the same power of e in Equations (16) and (17)

gives the partial differential equations for the yon Zeipel's method

ZZK
m=0 (m) p=l \ip=l/

3L_ * *
p \_i I " " "_iN/_=O

=0 (18)

for u = O, I, 2, ...

For instance, Equation (18) gives:

_=0

(19)

_=I

/3S1 hF o

i=l Li =_i
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-4-

.xl._
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+
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LI

.XlJ

fl

+

_['--_o

_* tl.

I!

.-,I-

il

_1_

-I-

_['No

I1

.qJ
+

+

..Xl._

..Xlj

it

11

t"

II

-t-

I1

.Xl;
-.F

Ib

t"

.q.
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i=l = _L-----_

+
ar_

£ _ :Ds_ _s_ _s_ _3 Fo .)_, _So
6 t_-_ _L*. ?L_ _'_ _.* ?_ _='_--_'L*i, j ,k=l . I 1

p

9s o
(22)

where use has been made of the coefficients

c (1; 1) = 1

1
C (2; 2) = 1 C (2; 1, 1) =_-

2 1 1
.... C (3; 1 1, 1)----.C(3; 3) = 1 C(3; 2, 1) 3 C(3; 1, 2) 3 ' 6

5. ELIMINATION OF VARIABLES

Since the solution of the system is known where F is reduced to F0,

the problem is to eliminate variables which are not present in F0.

Suppose a canonical transformation is found in such a way that__pof the

n coordinates (p ! n) have been eliminated from the Hamiltonian, that

is

14



; F'-- _* (_" _" • • :)p+l' .. , _, L:, L 2 ..... L . (Z3)

The equations of motion then yield

L_, = Ck (const.) (k -- 1, 2 ..... p) .

If these constants are replaced in F*, then

F*= F* ( p+l' ' n' ' " '

(24)

and the problem is reduced to one of n-p degrees of freedom.

a. If p = n, the problem is completely solved, since

L k = C k (k = 1, 2, ..., n)

and

_k = °°k (Cl .... , Cn) t + _k (0). (k = 1, 2 ..... n)

b. If p = n-l, the problem is integrable by quadrature. In fact,

L u = C k (k = 1, 2 ..... n-l)

_, _ 3F*

N

° * ° 7 g_-A (c,, c=, co_,; o, ,:)

.r

Since

_, _ OF* _ N' (CI, C2,
n 3L* n

• *" _ • L • ,co_,. o, ,.)

F* ((2 C_ 1" _* L*) C = const.,1 _ • • • _ I fit fl
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then

L:- L: (c, c, ..... Co.,;<)

and therefore

%": a (c, c, c ; C)

and

t-t0= o d_}% (C, C 1 .... Cn_ 1, _)(o) n

The coordinate g* becomes a known function of time as well as L*.
n n

Therefore, the equations

". 3F* = L* _*
*k = -3L---_" _'k (Cz, C 2 ..... Cn=,; (t>, . (t))

(k = 1, 2 ..... n-l)

can be integrated by quadrature.

The yon Zeipel's method consists in the elimination of some of

the coordinates (angular variables) and the reduction of the problem

to case (b) and possibly (a). The adaptability of this method is based

on a set of hypotheses which are listed below in Roman numerals.

I) The new and old corresponding variables differ by a quantity at

least of the first order, i.e.

16



,_* - £. : o(_)
i 1

$

Li - Li -- 0(c).

(i--1, 2 ..... n)

This automatically fixes S O to correspond to the identity trans-

formation since for z = 0, the above conditions give

L:, =- L i.

(i = I, 2, ..., n)

Therefore

So =£gi L*i "

i=l

(25)

If expression (25) is substituted into Equations (19), (20), (21)

and (22), then

u=0

F o (_, L*) = F_ (_, L*) (26)

u=l

F, (_,,L*)+ i=, \T_-iJLi=L; _L:

F_ (_, L*) + '--7 _.

17
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i , j=l Lk-Lk 1 j

= F: (£, L*) + i= i \gL-_*/,_:=,_ i _,_---_.,+
3L* ,

i=l t i//_i=/_ i _'_i

:, j = i Jl_k =_k J

(28)

and similarly for Equation (22).

i

It is seen that Sk (L*, _) and Fk (L*, 4) are unknown functions. In

order to perform a particular solution toward the elimination of certain

angular variables in F* we impose conditions (which are usually suitable

in Celestial Mechanics) on the functions Sk and Fk. They are

II) F_ (L*, 4) does not depend on _i (i = 1, 2 ..... p <_ n) for any

k ZO.

III) Sk (L*, 4) only depends on the _i (i = I, 2..... n) through

trigonometric functions, for any k > 0. This avoids "secular

18



perturbations" in the momenta Lj, or in other words differences

L - L* -
J )

(s - So)

I

are periodic functions of the 4k (k = 1,2 .... ,n).

The application of these conditions, together with the obvious fact

that F 0 does not depend on angular variables 4. (i = 1 2, p < n)

which are to be eliminated, yields the relations

(_p+, • . ") *(z+ . * ... L*) (zg)Fo ..... "_n' L: .... L = Fo : .... '_.' LI' ' n

FI s = F_

F,,+ ::7),.. :-c7: t:],4::._, __ :_o_i=l .--L 1 i--p+l i

F2s + P2s = F; + P_*

A
F2p + P2p + -- ?L---_.* 2P + -- (31)

• i=p+, \ _Li ],_: =,_i i

and so forth. The functions Fls and Flp , F2s and F2p, P2s and P2p' P2*s

and P *2p are the portions of F 1, F2, P2 and P2 which are respectively

independent of and dependent on the _i (i = 1, 2 ..... p), and where

19



P2

": 1 i i, j:p+l i

(32)

In the usual problems of Celestial Mechanics F 0 does not depend on any

angular variable so that the Equations (30), (31), (32) and the corre-

sponding equations for higher order are much simplified. Thus, the

additional hypotheses will be considered.

IV) F 0 and thus F 0 depend only on the momenta L*i

v) The angular variables 6 (i = 1, 2 ..... m) corresponding to
1

momenta L i (i = 1, 2, ..., m) that are present in F 0 have been

eliminated to the k th order.

The next problem is the possibility of elimination of angular variables

whose conjugate momenta are not present in F 0. At this stage the

Hamilton*an of the system is

* ( * *) ; (6m+ 6 , * .. L*)F* = F 0 L i ..... L + F I ..... L1, • , n +

where

+ ... + F_ (6 +, ..... 6n, L l ..... L*) (33)

Lt = C -- const (j : 1, 2 ..... m)
J J

2O



and the old and new variables are related by

L - L* _S: bS 2 _SI_
, , --_---7+ _ + "'"+ _Z_

J I 3

3S x hS 2 _S K
_*_ :_.=_+_+ ...+_.
J ' 3L* bL_' _L ?

J ] J

(j : 1, 2 ..... n) (34)

Assume a new canonical transformation from the variables

(_* _* L* *) (-_** :_** L_: .....m+l' "''' n' m+l .... , L to the variables , m+l .... ' n ' 1

L**) and let

s" L'" i:')= s (35)
m+l' "" " ' n' m+l' " " ' n

be its generating function.

m),

Then, since L* = C = const (j = 1, 2 .....
J ]

** ** **

F o (L 1 .... , L**) : F o (L 1 ..... L**) = const (36)

Lk* *= L k = C k -- con st (k = 1, 2 ..... m)

* (_*+x' _*" L**) =F x ., C 1 C 2, . C m, L**

(37)

** (_* . _*" L** .. L**)F1 m+l' " " ' n' m+l' " ' "

The last equation implies that the elimination of further variables is

possible if and only if F_ does not depend on them. For in this case

21



r; (e' e* c, c2 co L*" L'*) :m+p+l' "" '' n' _ '''' ' m+l' '''_

**(," .L'* ")= Fl m+p+l' _* L *,'" _ n _ rn+l _ ''',

and

r:(.+,.....°,C:,.....:'")+ :_::_L"
i=m+l i 1

F2 ('_*+P+" _*" ** _, BL**3S;_F*I* (38)_- "* .... o, Lo+,..... LT) + a,.
i=m+p+l i

%*l

which defines $I. It is important to note that in such a case S twill be

defined by an equation involving 2nd order terms; these terms are

therefore necessary to obtain first order "perturbations." This fact is

exactly what happens in Brouwer's theory on artificial satellites (1959),

where

a) The elimination of g'is possible because F_ is independent of
,. =. .....

this variable.

b) The development for long period perturbations ( those of argument

g*) needs the evaluation of 2nd order terms.

This type of reasoning can be carried on up to any order in exactly

the same way. It may then happen that the elimination of a certain

angular variable by obtaining S l requires the evaluation of terms of the

kth order.
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However if F_ depends on the angular variables to be eliminated

the problem cannot be solved unless it happens that the remaining

system has one degree of freedom. For example, this is the case of

the perturbations on the motion of an artificial satellite by the moon.

6. SMALL DIVISORS

The case of critical inclination for the theory of artificial satellites

of an oblate planet for which P2 is the dominant zonal harmonic and

.T4 / -J_, is a well known example of the problem of small divisors.

Here, only a particular aspect of the question is dealt with. Consider

the solution of Equation (30) in the usual case where F_ does not depend

on the Zi' The characteristic associated system is

d'_ 1 d_ 2 d_p dS 1
, . o

3F o _F o 3F o F1p
{39)

Should one of the partials _F0/_L _ happen to be zero, the general solu-

tion would certainly be discontinuous since a "small divisor" is present.

However this divisor is not exactly zero because the quantity _F0/_L i

is evaluated to first order only.

In the case of critical inclination it is necessary to take

S = S O + 6I/2 Sl/2 + c S 1 + 3/2 83/2 + ...

However, in doing so the separation of "long periodic" and "secular"

perturbations is lost. The integration leads, in most cases, to elliptic

integrals (Hori, 1960).
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The question of small divisors usually arises whenever the problem

presents cases of libration as particular solutions.

Another case to be mentioned is the resonance for an artificial

satellite whose period is commensurable with the period of rotation of

the Earth when tesseral harmonics are included. Again, expansion in

powers of eI/2 can be used to solve the problem (Morando, 1962).

Finally it is important to note that singularities in the Equations

(39) reflect singular points in the hypersurface defined by the Hamil-

tonian of the system in a phase-space of 2(n-p) dimensions if p variables

have already been eliminated.

7. SUMMARY

The general differential equations of the von Zeipel's method have

been given to any order. It is hoped that this will avoid tedious Taylor

expansions if one needs to go to order higher than the second.

At the same time, the brief discussion on the applicability and a

few pathological cases of the method, may give some guidance toward

the solution of new problems.
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